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Abstract 

The “noise” of chromatographic baselines has been investigated in regard to the detector, the nature and extent 
of filtering or smoothing. and the methodologies of qualitative and quantitative assessment: a11 in order to clarify 
the role such factors play in the determination and interconversion of some common types of detection firnits. This 
study scrutinizes baselines from the flame photometric detector in sjn~e-channel continuous and ten-channel 
multiplexing versions; it also examines baselines from flame ianization and electron-capture detectors. It makes we 

of finite impulse response and non-weighted moving-average digital smoothing, as well as three-pole analog 
filtering. 

Baseline fluctuations are quantified by the standard deviation derived from the common root-mean-square 
(RMS) calculation, or from the Iess common least-squares Gaussian fit; peak-to-peak noise (N,_,) is estimated by 
procedures including or excluding pre$umed outliers. Individual results are expressed as the ratio of NV_, 
measurement and RMS calculation performed on the same data set. A wide variety of such ratios are then 
assembled from different detectors, filters, and smoothing conditions. They prove conclusively that --contrary to 
common belief- the conversion factor between the two types of measurements does vary: usually between 4 and 
10, but occasionally even farther. Consequently, the conversion factor between the corresponding two types of 
detection limits varies as well. 

The N,_,/RMS ratio depends largely on the detector-~~f~origin, its condition, and the extent to which noise has 
been filtered. In contrast, the nature and sophistication of the filter hardly matters: either for the N,_,iRMS ratio 
or for the practical detection limit. This is because the slow undulations characteristic of heavily filtered baselines 
represent -at least in the detectors we used- dampened fast noise rather than aboriginally slow noise. 
Corresponding computer simulations, based on amplitudinally random noise smoothed by stationary boxcar or 
non-weighted moving-average filters, produce results strikingly similar to actuat baselines. Simula& fast RMS 
noise correlates, as expected, with the square root (log-log slope = 112) of the filter’s time constant. The 
corresponding slopes for experimetzrai noise are usuafly close to 112 as well. Most important&, though, the 
simuhred N_,lRMS ratio varies strongly with the extent of smoothing -thus mimicking and thereby explaining 
the behavior of the experimental ratio. 

* Corresponding author, 
* Part of doctoral thesis of H.S. 
’ Present address: Environmental Trace Substances Center. 

5450 South Sinclair Road, Calurnbia, MO 65203, USA. 

1 II Intr~uc~iun 

Detection limits -in the widest sense of the 
term- are ubiquitous in the analytical and 
chramatographic literature, despite the fact that 
no single technique for their determination has 

reserved 
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yet managed to achieve universal acceptance. 
Indeed, it is not unusual to encounter numbers 
whose ambiguous derivation or lacking definition 
make interlaboratory comparison difficult: a 
situation frequently deplored (e.g. [l]). Even 
literature from the 1990s often describes detec- 
tion limits merely as ‘-SIN = 2” or “SIN = 3”, 
while failing to mention whether N was mea- 
sured peak-to-peak or root-mean-square (two 
measurements that differ from one another by 
far more than 2 differs from 3 -and in the 
opposite direction to boot). This manuscript is 
unlikely to change the situation; if anything, it 

will further complicate it. 
There are three general approaches to docu- 

menting detection limits in chromatography and 
beyond. The first is pictorial (and by now rare in 
the literature, though still our own preference): 
it displays the recorder trace of a signal small 

enough, a baseline long enough and noise large 
enough, to allow evaluation by the analyst. The 
second and third are numerical: they list the 

amounts or concentrations or flows at which the 
signal/noise ratio (SIN) assumes certain quality 
values, e.g. 2, 3, 10, etc.. Aside from the latter. 

level-of-confidence parameter, the only differ- 
ence between the two numerical assessments is 
the quantification of noise: whether it is mea- 

sured peak-to-peak (Np_P) or calculated root- 
mean-square (RMS). Though often poorly de- 
fined in practice. so far the matter is well 

understood. 
What is less well understood is the precise 

relationship of these two numerical assessments. 

Yet their relationship is of great practical value. 
It holds theoretical interest as well; and it has 
even affected the promotional efforts of instru- 

ment companies. Hence: do these two assess- 
ments correlate; can one set of measurements 
accurately predict the other? If so, what is the 

numerical value of the conversion factor? 
Under ideal circumstances of short-term noise 

and normal (Gaussian) distribution, a reasonable 
correlation can be established between the theo- 
retically time-dependent ND_,, and the theoret- 
ically time-independent standard deviation 0 of 

baseline fluctuations in chromatography [2]. In 
spectroscopy, a widely quoted rule-of-thumb 

neglects the effects of sampling time and equates 
N p_p with five times the RMS noise, where RMS 

is considered to equal the standard deviation of a 
Gaussian distribution (e.g. [3,4]). But is chro- 
matographic noise always Gaussian? 

One could argue that it really should not 
matter: all numerical detection limits are single 
significant digits by definition. A recent book, 

devoted almost exclusively to detection limits 
and their meaning, expresses it thus: “One finds, 
for example, that at least 13 replicates are 

necessary to obtain s within 50% of the 
true IT (90% confidence interval)” [5]. If so, the 
conversion factor between the two detection 

limits may by its very nature be thought of as 
similarly vague, i.e. inherently incapable of 

sharper definition. 
But what particular number then to use? The 

conversion factor of one-digit detection limits 
can legitimately be a two-digit number -if 
justified by its obtainment, of course. The repli- 

cates of conversion factors (each from a single 
set of noise data) are of considerably greater 
precision than the replicates of noise itself (from 

several data sets). For instance, one of our 
earlier studies used 27 noisy baselines, i.e. 27 
values of the conversion factor (ratio), in order 

to determine the latter as the two-digit number 
N,_,,/a = 5.5 + 0.4; though it did so expressedly 
“only for our particular measurement techniques 

and circumstances” [6]. 
Recently we measured that ratio again on the 

same detector. However, the detector was now 

monitored by a radically different (discontinu- 
ous, multiplexing) detection system [7], and the 
new ratio turned out to be significantly smaller 

than the old one. That was disconcerting. 
Furthermore, the ratio clearly varied with the 
extent of data filtering or smoothing. 

Note on terms: the verbs “filter” and 
“smooth” may appear synonymous in this manu- 
script. However, these terms are not treated as 

synonyms in the specialized literature [g-12]. 
There, to “filter” implies an -irreversible and of 
necessity fast- reduction of noise on data during 

the acquisition phase; to “smooth” suggests an 
*ften much slower and algorithmically more 
complex- reduction of noise on already ac- 
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quired and safely stored data. The same algo- 
rithm, if fast enough, can serve as either a 
“filter” or a “smoother” [S]. In this work, the 

common three-pole analog filter (resistor- 
capacitor, RC) is used primarily as a filter but 
can be employed as a smoother as well; the 
faster non-weighted moving-average filter (AVG) 
is designed to function as either a filter or a 
smoother; and the slower conventional finite- 
impulse-response filter (FIR) is available as a 

smoother only. 

interference filter, supported by hardware and 
software for operation as a ten-channel FPD 
with wavelength as the third dimension (3D- 
FPD) [7]. The wheel spun at 600 rpm, i.e. at an 
acquisition time of 5 ms for each 100 ms data 
point. The FID and the Ni-63 ECD were con- 
ventional units (Shimadzu and Tracer, respec- 
tively). Detector conditions remained typical of 
routine operation; they had no obvious bearing 
on the results of this study. 

Back to the main question: why does the N,_,/ 

RMS ratio vary with conditions? Why should 
filtering or smoothing change it? Can its change 
be explained and predicted? To answer these 
questions, the “nature” of chromatographic 
noise will have to be further scrutinized. But that 
brings up a host of new questions. What is the 
initial character (the “unfiltered” distribution) of 
such noise? Can truly unfiltered noise even be 
measured? Would it be source-dependent. i.e. 
would it for instance differ among the flame 

ionization detector (FID), the electron-capture 
detector (ECD) and the flame photometric de- 
tector (FPD)? Would it differ between continu- 
ously (“two-dimensional”, 2D) and discontinu- 

ously (“three-dimensional”, 3D) sampled FPD 
versions? And would all that affect the different 

approaches used to define detection limits? 
Trying to define the barely detectable may 

literally amount to much ado about (almost) 
nothing. Yet, in the literature, detection limits 
are quite frequently discussed and defined 

[1,2,13-171, even to the extent of a whole book 

U71; and they are, by necessity, even more 
frequently used (and abused). 

All raw data flows were routed through a 
conventional electrometer of RC time constant 

0.22 s, with the exception of those coming from 
the 3D-FPD. The photomultiplier output of the 

latter was processed by a high-speed amplifier 
and split into ten 5-ms segments per revolution 
of the wheel; the data were then assigned to one 
of three ranges of decadic sensitivity, summed by 

a gated integrator, converted into digital form, 
and forwarded to a computer for storage and 

display [7]. In (our own) “WHEEL” software, 
two types of low-pass digital filters were avail- 
able for smoothing operations on the ten-channel 
data: a non-weighted moving average (hereafter 
referred to as AVG) with operator-defined win- 
dow width; and a weighted moving average (a 
conventional finite-impulse-response filter here- 
after referred to as FIR) with operator-defined, 
fully variable cut-off frequency and the choice of 
32. 64 or 128 taps [7]. Half the symmetric table 
of its weighting coefficients, which follow the 
Hamming window function, was calculated [18] 

bY 

coefficient(m) 

sin [(cut-off frequency/ sampling rate)mT] 

* (0.54 + 0.46 cos [Z(filter taps/2)]} 
3. Experimental 

where 1 < m < (filter taps/2). 
All data sets were obtained from chromato- The conventional (2D) FPD, the ECD and the 

graphs carrying well-tested and well-proven FID (the latter via a laboratory-built pream- 
(though perhaps slightly worn) detectors. The plifier) were monitored on the same Shimadzu 
early FPD data came from a Shimadzu GC- GC-4BMPF electrometer, which fed an interface 
4BMP (2D-FPD) model connected to a iabora- and thence one of our own, two-channel com- 
tory-made computer interface; the more recent puter programs named “CHROM-8” [ 191. This 
ones came from the same unit equipped with a program contains, inter alia, the FIR filter algo- 
600-rpm wheel carrying a semicircular variable- rithm. It also provides a routine that sorts 
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baseline fluctuations according to the magnitude 
of their deviation from the mean (a form of 

software-based multichannel analyzer), and feeds 
the resulting array of (raw or smoothed) baseline 
data to a Dalhousie University undergraduate 

network program offering least-squares fitting of 
Gaussian and other types of curves. The en- 
forced Gaussian fit then yields the nominal 
standard deviation gfil _ (Note that data files can 

be imported, a pair at a time. from the newer 
ten-channel WHEEL program into the older 
two-channel CHROM-8 program -but not the 
other way around.) 

In addition to the smoothing and evaluating 
functions that are confined to the computer, the 

raw or treated data flow can be returned from 
the CHROM-8 program (or from the WHEEL 

program through the CHROM-8 program) to the 
analog domain; and it can, via a simple, labora- 
tory-made three-pole filter with a set of time 
constants, be recorded on a chart (that filter will 

hereafter be referred to as RC). Raw or 
smoothed data can also be forwarded directly to 
a laser printer. And, obviously, the electrometer 
output can remain completely in the analog 
domain, i.e. it can provide in the conventional 

manner (usually via the RC filter) confirmatory 
baselines or chromatograms on the strip-chart 
recorder. 

The older and newer versions of the lab- 
oratory-developed detection limit program’ dif- 
fer somewhat in their analytical objective, al- 
gorithmic approach, operational convenience. 
and range of application (though they did not 
differ, whenever checked, in their results). 

The older CHROM-8’s “SIGMA” routine [6] 
employs very heavy digital filtering of the 
baseline noise (with an operator-adjustable time 

constant) in order to establish a smooth “zero 
line” (slightly offset by computational inac- 

curacies), from which the real baseline fluctua- 

tions are measured. The algorithm then uses the 

‘Researchers interested in these and other programs for 

non-commercial purposes are invited to contact B.M. for 

executable copies. For information on the Gaussian fit 

program, please contact C.H.W.: for information on the 
noise simulations, H.S. 

conventional formula for calculating the RMS 
deviation: 

RMS = 
c k - a2 

=u 
n 

[Note: The definitions use the value, not the + 
range of the standard deviation. To use the 
latter, adjust any derivative equation by an 

appropriately placed factor of two.] 
The newer WHEEL’s “DL” program [7] uses 

a second-order least-squares fit of the baseline 

(from 50 points selected by the computer at 
equal intervals on those stretches of the chro- 
matogram that the operator designates as 

“baseline”). The deviations xi are then measured 
from this smooth line. They are used directly 
(recourse to the mean X, having become super- 

fluous) : 

For this study, n equals 10’ to lo4 data points 
(very roughly 2 to 20 min worth of chromato- 
graphic acquisition time). 

The DL program proceeds to compute nu- 
merical values for the most popular types of 
detection limits. [Note that these may be associ- 

ated in the literature with different names +.g. 
“detectability”. “limit of detection (LOD)“, etc. 
[1,2,13-17]- depending on the analytical cir- 

cumstance and purpose, the algorithmic formula 
and the desired level of confidence]. Alluding to 

disciplinary preferences -but used here solely 

for ease of reference- we shall denote the 
algorithmic detection limits based on SiRMS = 3 

as DLaprc7 and those based on SIN,., = 2 as 

DLchrc,,,, . Thus, 

RMS 
DLsp,L = 3 . ~ - A (g or mol) s 

where S is the signal (peak height) and A is the 

amount injected (presumed to be equal to the 
amount reaching the detector). 

In terms of minimum detectable flow at peak 

apex (which, for a Gaussian peak of standard 
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deviation uF,. is equal to A/2up), the computer 
calculates 

RMS A 
DLsprr = 3 .s. - 2a (g/s or molis) 

P 

(Note: the computer measures 2~~ as the 
width of the peak, in s, at 60.7% of Its height 
-regardless of its occasionally asymmetric 

shape.) 
To determine the “chromatographic” SINp_, = 

2 detection limit on the screen, the operator uses 
cursors to define the signal S (the peak height) 
and the peak-to-peak baseline noise N,.,. The 
latter is available in two versions, depending on 

whether or not the operator’s pattern recognition 
and judgement is taken into account. 

To wit: the first version is “objective” and 
“inclusive” (i.e. it is independent of the operator 
and representative of all signal excursions. thus 
including the sharp and strong fluctuations that 

appear to extend beyond the normal distribution 
of noise and are hence called “spikes” or “out- 
liers”). We shall name N noise thus measured 
N,,,. The second versio!? is “subjective” and 

“exclusive” (- 1.e. it allows the operator to define 
the core of the noise. thereby excluding what 
appear to be spikes). We shall name N,., noise 

thus measured N,,,,, . Obviously, N<,,, > N,,,,, in 
spiky experimental situations: in simulations 
(which start with perfect Gaussian distributions), 

N p-p = N,,,. 
The DL calculation. similar to the one above. 

is then 

N 
DLchram = 2 . F . A (g or mol) 

and 

N 
DL chrt,m = 2. F .$ (g/s or molis) 

(Note: The first number in each equation, i.e. 
p = 2, 3, etc., is the level-of-confidence or prob- 

ability-related parameter that -for purposes 
other than of this study- can be adjusted to suit 
analytical objectives or literature definitions.) 

Obviously, each of the equations above simply 
relates the detection limit to the commonly used 

with noise being what- 
to be: 

signal/noise ratio (SIN); 
ever the analyst wants it 

DL= pm& (g or mol) 

or 

P A 
DL=q SIN 

.- (g/s or molis) 

263 

(This is both trivial and well-known, as indeed 

are most of the preceding definitions and rela- 
tionships. Yet, they needed to be given here 
again: on one hand to provide a clear record of 
procedures used; on the other to establish un- 
equivocal terms for discussions to follow. The 

r-teut designations -e.g. NaI,, N,,,,, u~,~, etc.- 
are intended for this study only. They are not 
proposed for wider usage: too heavily already is 
this subject fraught with terms and definitions.) 

3. Results and discussion 

The prime objective of this study is to address 
the connection between detection limits that rely 
on baseline noise as defined by, on one hand, the 
peak-to-peak (p-p) measurement and by, on the 
other hand. the root-mean-square (RMS) calcu- 
lation. This study represents a bottom-up ap- 
proach (i.e., what does real-life noise look like 
before and after smoothing?) rather than a top- 
down enquiry (i.e., what happens mathematical- 

ly to a temporal array of normal or exponentially 
modified distributions when exposed to algorith- 
mic filters of different types and varying time 
constants?) The essential objective of this study 
thus concerns not the statistics or electronics of 
the two basic measurements of noise, but the 

measurements themselves: how does the ex- 
perienced chromatographer reasonably perform 
and interconvert them? 

This question emphasises the practical. Conse- 
quently, a selection of frequently used detectors, 
filters and evaluation methods is recruited to 
provide the experimental data. The detectors 

include the FID, ECD and FPD, plus a variation 
of the FPD that happened to be available in our 



laboratory. The filters include a plain AVG and a 
sophisticated FIR, as weit as a simple three-pole 
analog RC filter. The evafuatioa methods in- 
cfude the /$,-based appruach with outfiers 
included (IV,,,) or excluded (NC,,,), and the 
standard-deviation approach based on the usual 
calculation (EMS) or the graphical evaluation 
from an enforced Gaussian fit (cT~~~)’ Not all their 
possible combinations are explored here; nor 
would it be reasonable to do so in view of the 
large number of different detectors and filters 
that litter the analytical battlefield. However, 
enough combinations will be investigated to 
allow general trends to be recognized. The 
d~f~~uIty of recognizing trends will generally 
increase from comparisons done on a single data 
file; to comparisons done on several data files 
from a single set of experiments; to comparisons 
done on data files from several sets sf experi- 
ments. 

The most impurtant question of this study is 
whether Np_o and c-based measurements of 
basetine noise are linked irk any fundamental 
way. An easy and significant answer to this 
question can be found in the area of convention- 
af data smoothing. 

Fig. 1 provides the answer in one of its 
simplest and clearest experimental versions_ ft 
shows 3B-FPD baseline noise, measured as Nali _ 
N core and RMS, as it decreases with the increas- 
ing window width of the AVG filter. Clearly, the 
two types of noise measurement do depend to 
differ-em degrees on the extent sf filtering. Their 
ratio must therefore depend on the extent of 
fittering as weil: the value of N>%,,iRMS changes 
from approximately 9 at 0.1 s, to 5.7 at I s, tu 
(extrapolated) 3.6 at 10 s. And the conversion 
factor for the two types of detection limits, 

~Lhrom and IX__.. varies accordingly. This 
may come as a surprise. It is not, however, aa 
experimental singularity: Aithough Fig, 1 hap- 
pens tu be particularly clear (to the point of 
being slightly deceptive), it does exemplify a 
trend evident in almost all of the tested detec- 
tor-filter combinati.ons. 

That the N,,,IRMS ratio should change with 

the filter time constant did not seem obviou’s to 
us at the beginning of this study. We will there- 
fore attempt to make the case for it in generd 
-and deliberately simplistic- terms. In such 
terms, “noise” can be perceived as deviations uf 
the signal from an imagined smooth (“true”) 
baseline. So, incjdenta~~~, can a peak. The 
analyst’s pattern recognition can easily tell the 
difference between the two. More than just an 
evaluation of peak width and noise magnitude 
seems to be involved here: the analyst instant& 
recognizes the ‘“shapes” of chromatographic 
peaks. In fact, their characteristically different 
shapes are still under active investigation [lo], 
mostly by physical chemists. But can chromato- 
graphic noise alsa assume recognizably different 
shapes’? 

This question is not quite as silty as it sounds, 
Recognition nf peaks should be easier -mean- 
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ing the detection limit could be lower- if peaks 

had shape but noise did not [lO,l l]. That brings 
up the question what causes noise, and what 
modifies it on its way to a determination of the 
detection limit. Characterization of noise as to its 
origin, power spectrum, and influence on S/N is 
particularly well developed in spectrochemical 

analysis (e.g. [4,20]), and that literature under- 
lies much of the following discussion. 

If the noise of, say, an FPD is due to the 
quantum nature of light (“photon shot noise”), 

it is random and there should be no shape to it 
(beyond the shape of the extremely rapid elec- 

tron avalanches in the photomultiplier tube, of 
course). If the FPD noise is due to changes in the 
flame (flicker, fluctuations in column bleed and 
flow, dust particles, drafts, etc.) it will show 
these events by their different signatures in 
different frequency ranges. Such noise will not 
be random in amplitude; it will be shaped. A 

similar random/ non-random assessment can be 
made of the complex and still not completely 
understood processes that translate the random 
emission of P-rays inside the ECD into the 
interrelated fluctuations of ion-pair generation 
and distribution, ion-molecule chemistry, and 

pulsed charged-particle collection on one hand 
[21-251; and the various physical and chemical 
disturbances known to occur in the ECD on the 
other. Ditto the chemiionization reaction(s) and 
sundry associated processes; and the bleeds, 
leaks, drafts and spikes that produce and/or 

influence the current of an FID [26]. 
Thus, ample opportunity exists for initial dc- 

tector noise to contain recognizable shapes. 
However, chromatographic detection systems 
are far too sluggish to display the profiles of the 
fast “primary” events (FPD photon detection. 
ECD and FID ion generation and collection). In 
a typical case, the time constant of the elec- 
trometer may be 0.1 s and the full-scale response 
of the strip-chart recorder 1 s. In addition, 
analog or digital filters with selectable time 

constants in the 1-10-s range are often used. 
Detection limits, in particular. are determined by 
smoothing the chromatogram as heavily as the 
concentration profile of the analyte and the 

conscience of the analyst will allow. The ques- 
tion of “shape” concerns therefore not only the 

original but also -and more so- the filtered 
noise. 

Different types of filters and smoothing algo- 
rithms [9-12,27-291 are often surprisingly similar 

in the job they do on the noise. This is perhaps 
best appreciated by considering the job they do 
on the (much more frequently investigated) 

analyte peak. The tip of the peak, say its 

uppermost ten percent, is its most vulnerable 
part; not surprisingly so since the signal might 
undergo there a, say, 170” change of direction. 
Different filters -at least the ones commonly 
found in chromatographic laboratories- all do 
adequate noise jobs, but they do clip peaks to 

different extents. 
Let us now imagine that the signal excursions 

above and below the baseline, which we normal- 
ly call noise, were a succession of small, sharp 
peaks. An increase in the severity of data 
smoothing then means that the sharp tips of 

these peaks will become round tops, i.e. that 
they will change their shape from protrusive to 

pouchy. As this occurs, the peak-to-peak noise 
will decrease rapidly, the root-mean-square noise 
will decrease slowly. The ratio of the two noise 
measurements, N,_,IRMS, will therefore change 

to lower values. 
The argument that a shape shift affects the 

N,.,/RMS ratio is further advanced, albeit intui- 
tively, by the geometric metaphor presented in 
Fig. 2. Its triangular, sinusoidal and hemispheri- 

cal waveforms are, for simplicity’s sake, re- 
stricted here to the same single frequency and 

N 
.P 

32 
RMS ms 

2.8 

2.4 

Fig. 2. Geometric 

explanation. 

figures treated as noise. See text for 
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amplitude. {Random distributions of frequency 
and amplitude could no doubt be called upon to 

make the resulting waveforms conform more 
closely to noisy baselines. Even at a single 
frequency and amplitude, however. the traces 

already resemble to a remarkable degree what, 
for instance, IUPAC considers to be noise ([30]; 
cf. Ref. [31])} 

The Np-p values of Fig. 2 are all the same; the 

RMS values, however, and hence the Np_p/ RMS 
ratios, vary by a factor of two. (They could, of 
course, vary by much more if the top triangular 

trace were made a bit spikier). Now imagine 
analyte peaks of identical height superimposed 
on these waveforms for purpose of determining 

their detection limits: all limits based on Np_p 
would then be the same, while the limits based 
on RMS would vary by a factor of two. (This 

raises the question which of the two noise 
definitions the conscientious analyst could 
reasonably choose for determining a chromato- 

graphic detection limit.) 
What Fig. 2 suggests is, in general terms, this: 

The spikier the excursions of original noise from 
the “true” baseline (i.e. the larger their ratios of 
height to width) and the less they are filtered, the 

higher will be the N,.,/RMS ratio of the noise. 

Conversely, the rounder the original noise fea- 

tures, and the more they are filtered, the lower 
will be the Np+IRMS ratio. Furthermore, the 
more severely a particular type of filter crops the 
tops of baseline excursions, the more it will 

depress their N,,+ / RMS ratio. 

3.3. Noise “distribution ” 

If noise were always normally distributed, 

there would exist a clear (though sampling-time 

dependent) statistical correlation between N,,, 
and RMS [2]. Conversely, since experiments 
often show this not to be the case, the dis- 

tribution cannot always be normal. Consequently 
we are including afi, in this study. Fig. 3 shows 
the particularly poignant example of an FID 

baseline unsmoothed (though, of course, filtered 
by the 0.22-s RC time constant of the electrome- 
ter). Its spikes suggest that the detector needs 

cleaning (or perhaps someone came into the 
room or touched the instrument?). Two spikes 
appear prominent on the chart-recorded baseline 

(see insert); these episodes last long enough to 
enter the distribution as several data points. 
Spikes or not spikes, they exemplify and illus- 

trate a common phenomenon. The standard 

-2.0 -1.0 0.0 1.0 2.0 3.0 s- 0 6.0 

Screen Un.it~/lO+~ 

Fig. 3. Example of a baseline with spikes: unfiltered FID noise. Insert: conventional recorder trace. 



deviation as measured by RMS is larger here 
than that measured by ‘if,,: Even spikes aside, 
the wings of the distribution (see arrows) are 
more intense than Gauss allows. Which measure- 
ment should then be considered, RMS or or,, ? 
Which should be considered in other cases of 
non-Gaussian or superimposed multiple Gaus- 
sian distributions? 

But these problems are minor -at least in 
terms of their numerical implications-- when 
compared to the problem of how to measure 
peak-to-peak noise: Na,, is about four times as 
large as IV,,,, in Fig. 3, and IV,,,/ofIr is at the 
ridiculously high value of 30. A strong case could 
be made here for using the subjective NC,,, 
rather than the objective IV,,, assessment. (And a 
strong case could be made for cleaning the 
detector and smoothing the noise.) 

Most detectors are better behaved than the 
FID of Fig, 3. Normal distributions are often 
approached. As an example, the top graph of 
Fig. 4 shows the noise from 22 mm of regular 
FPD operation. Surrounding the sohd hne of the 
enforced Gaussian fit are two dashed lines, 
drawn to demarcate the s uare-root band at 
t [(number of occurrences) 18 )* Asymm~tri~ dis- 
tributions not attributable to spikes can also be 
encountered. The bottom graph of Fig. 4 shows 
an example; the solid line again representing the 
enforced fit, the dashed line indicating what the 
corresponding author of this manuscript -bliss- 
fully unaware of shape and cause- imagined 
“true” distribution to look like. 

the 

3.4. Noise “speed” 

It could be argued that deviations from the 
Gaussian shape may be due to noise processes of 
different duration and distribution, which would 
come sequentially to the fore as smoothing 
became increasingly effective. That would sug- 
gest the presence of weaker and slower (initial) 
noise components -with time constants within 
and perhaps beyond the filter range- which 
became visible only as the stronger and faster 
components were progressively quelled by the 
filter. 

However, such does not seem to be the case 

Fig. 4. Examples of noise distributions. Upper graph: Gaus- 
sian, unfiltered 2D-FPD noise. Solid line: enfarced Gaussian; 
dashed lines: + [(number of occurrences)1’2]. Lower graph: 
asymmetric, heavily filtered 3D-FPD noise. Solid line: en- 
forced Gaussian; dashed line: corresponding author’s pre- 
sumptian. 

here, at least not to any significant extent. If it 
were, then components slower than the 5-ms 
segment acquisition time of the 3D-Fl?D system 
should appear in two or more wavelength seg- 
ments (provided they would do so optically) 
-and they could therefore be annulled or at 
least significantly decreased by the subtraction of 
two suitably chosen and scaled segments from 
one another. (Both our CHROM-8 and WHEEL 
programs provide the option of subtracting spec- 
trally diverse detector backgrounds or sample 
matrices [7,39]), 

Yet, such an attempt at noise subtraction 
failed. The noise did not decrease as expected, 
but instead increased by a factor of ca. 2rf2 [7]* 
Furthermore, a similar attempt using continuous, 
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i.e. electrometer-acquired two-channel data from 
a conventional FPD, had failed earlier in similar 
fashion. Thus, at least for these FPD cases, it 
appears that the relatively slow noise undulations 
(which figure prominently in heavily filtered 

baselines) do not originate as slow noise in the 
detector (e.g. as flame or flow flicker). Rather, 
they must owe their existence to fast noise being 
converted into slow. 

3.5. Sundry detectors, sundry jilters 

We return to evaluating further combinations 
of detectors and filters. Table 1 presents a 

selection of four typical noise sources, all treated 
by the same filter. This selection includes con- 
ventional electron-capture and flame ionization 
detectors, the FPD in the intermittently sampled 
3D version, and a conventional photomultiplier 
tube’s dark current. Other systems behave simi- 
lar. Note that the results of Table 1, representing 
noise or noise-ratio measurements by various 
definitions, may be compared only with due 
caution, They carry, at best, two significant digits 
-as, indeed, one expects them to. The im- 
portant data -in terms of addressing various 
definitions of detection limits- are, of course, 
the ratios as given in the last four columns. (The 

Table 1 

FIR smoothing of noise from different sources 

FIR N,,, N itlre RMS ur,l Na,,lRMS Na,, ‘ufil N,,,, 1 RMS Nco,e “fit 

cut-offs 

63Ni-ECD, d.c. mode, 5 min 
Node 3 280 
2 3 060 
1 2 630 
0.5 2 090 
0.2 1060 
0.1 556 

FID, 10 min 
None 14 300 
2 12 800 
1 7 720 
0.5 4 630 
0.2 1 550 
0.1 711 

3D-FPD. segment 4 (cu. 490- 
None 16900 
2 7 860 
1 5 060 
0.5 3 310 
0.2 1660 
0.1 899 

-520 nm). 

10 loo 

4 330 
2 710 
1800 

930 
520 

10 min 
2 580 
1160 

780 
522 
276 
159 

2700 533 557 6.2 5.9 5.1 4.8 
2500 514 520 6.0 5.9 4.9 4.8 
2200 464 472 5.7 5.6 4.7 4.7 

1 760 367 3.58 5.7 5.8 4.8 4.9 

837 210 238 5.0 4.5 4.0 3.5 

SO0 116 133 4.8 4.2 4.3 3.8 

7 130 I loo 875 13.0 16.3 6.5 8.1 

5 730 984 792 13.0 16.2 5.8 7.2 

4400 758 628 10.2 12.3 5.8 7.0 

28W 482 426 9.6 10.9 5.8 6.6 
1 100 224 216 6.4 7.2 4.9 5.1 

617 122 122 5.8 5.8 5.1 5.1 

2 490 6.6 6.8 3.9 4.1 

1 150 6.K 6.8 3.7 3.8 

774 6.5 6.5 3.5 3.5 

530 6.3 6.2 3.4 3.4 

253 6.0 6.6 3.4 3.7 

142 5.7 6.3 3.3 3.7 

Dark current. R-374 photomultiplier tube. ~760 V, 5 min 
None 3 loo 2OOO 380 390 
2 2800 1 870 360 380 
1 1800 1 500 290 290 
0.5 1200 870 180 200 
0.2 440 380 84 88 
0.1 230 210 46 50 

8.2 7.9 5.3 5.1 

7.8 7.4 5.2 4.9 

6.2 6.2 5.2 5.2 

6.7 6.0 4.8 4.4 

5.2 5.0 4.5 4.3 

5.0 4.6 4.6 4.2 

a In Hz, nominal. 
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first four columns of plain noise measurements 
have been included for purpose of complete 
documentation only- These data, coming as they 
do from different detectors, conditions, am- 
plifiers, attenuations, etc., are of necessity given 
in arbitrary units and are hence comparable only 
within a particular set, not across the whole 
table.) 

Table 1 suggests that different noise sources 
do produce di#erenc types of noise to start with. 
The highest and the lowest ratios in the “non- 
filtered” mode are about a factor of two apart. 
{The FID used here is somewhat cleaner than 
the one that produced Fig. 3.) The assumption of 
different types of noise is also supported by 
different distributions. In a perfectly Gaussian 
distribution, RMS and gfir are the same; and so 
are the ratios N,,,/RMS and &‘a,l/irfit. Examina- 
tion of Table 1 shows, however, that the two 
measurements differ to a small but significant 
extent. Now, RMS is larger in the FID (as 
expected from-Fig_ 3) and the 3D-FPD; while cfit 
is larger in the ECD and the covered photo- 
multiplier tube. These reIationships hold (with 
minor exceptions) throughout the monitored 
smoothing ranges. Yet the differences between 
RMS and o~,~ are relatively small. 

Perhaps the most striking trend apparent in 
Table 1 is that all the ratios decline (again with 
minor exceptions) as the extent of FIR smooth- 
ing increases. This parallels the relationships 
obtained with the AVG filter as portrayed in Fig. 
1. Fig, 1 is, however, somewhat limited: the 
AVG filter is restricted to a window width of SO 
data points, i.e. 5 s [7]. In contrast, the time 
constant of the FIR smoother is unrestricted. 
Fig. 5 presents therefore a close-up look at the 
ratios in two detectors -conventional FPD on 
top, FID on the bottom- over an FIR filter 
range that extends to longer time constants and 
includes more data points. The found depen- 
dence is illustrated by solid least-square linear 
regression lines. Note that, given the kind of 
subject and the type of plot, the data points are 
e-pec& to show considerable scatter. Note also 
that these baselines -in contrast to those of Fig. 
l- were obtained from an electrometer of RC 
time constant 0.22 s: consequently it would have 

1IIN I IllIf 
FID; FIR Filter 

ioa 

Time Constant (s) 

Fig. 5. Variation of jV,,,iRMS and N,,,imf, ratios with FIR 
smoothing of FPD and FID noise. The nominal time constant 
is the reciprocal FIR “cut-off frequency” (see Experimental). 
The solid lines are linear least-squares regression fits. Upper 
graph: 12 min of conventional FFD noise. Non-filtered ratios 
(straight from RC time constant 0.22 s electrometer): 9.7 and 
8.X. Lower graph: 30 min conventional FID noise. Non- 
filtered ratios: 16 and 13. 

made little sense to measure data points below 
that value. 

Fig. 5 confirms that the N,,,/RMS and N,,,lafit 
ratios decrease as the influence of the smoothing 
algorithm increases. The N,,,,/RMS and NC,,,/ 
of,, ratios are not shown here; they display 
similar though somewhat less dramatic behav- 
iour. So far the ratios behave as expected. 
However, so far we have considered only nu- 
merical, not visual behaviour -and the interre- 
lated topics of noise, filters and detection limits 
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may contain significant perceptual components. 
Better expressed: “anyone who tries to anatyse a 
time series without plutting it first is asking for 

trouble” [X?]. 

One potential troublespot in this study is the 
N cu,e definition. We have no better way of 
defining what the first author perceived to be 
“care” noise than by displaying the re.sults of his 

efforts on a 3D-FPD sample plot. In Fig. A, the 
subjective NCO,, measurement is shown on the 
right, the objective Na,, measurement on the left; 
for AVG window widths ranging from 0.1 (un- 

filtered) to 5 s. 
(Note: It would have been easy for us to 

replace the analyst-assessed Emits of NC,,, by a 
camputer-calculated test for outliers -thereby 
changing NC_ into a seemingly “objective” 
measurement. Indeed, such may be a reasonable 
action to propose if -and that is a psycho- 
logically insurmountable if- the scientific com- 

munity were likely to agree on a binding set of 
rules for determining detection limits. But, in the 
context of this exploratory study+ it would make 
little sense to introduce outlier tests for despik- 

ing baselines. Furthermore, we would not want 
to add to chromatographic practice yet another 

hidden algorithm whose precise effect on peak 
and noise is difficult to evaluate. 

Beyond documenting the first author’s holistic, 

subliminal perception (cf. [33]) in defining NC,,,,, 
and beyond providing the visual record of a 
sample data file, Fig. 6 offers still further materi- 

al for discussion. For instance: after about 1 min 
into the record, the top trace shows two strong, 
positive excursions. These persist in two more 
traces below, then subside. In contrast, the 

strongest positive excursion of the bottom trace 
occurs at about 4.25 min. Its presence can be 

followed up to the top trace, but just barely. So 
why do traces of different time constants empha- 
size different episodes? 

The human eye is attracted to the highest 
amplitude of an individual excursion (the “re- 
cord performance”‘); and so, of course, is the 

measurement of N,!,. Filters, on the other hand, 

4 AVG 

I I I I 

0 5 10 minutes 15 

Fig. h. Traces of AVG-smoothed 3D-FPD noise, comparing 

.*!G~I, m~~sur~rn~nts and N,.,,r estimates. Laser printer, 

take a broader view: they simply redistribute net 

total energy. A strong but lone excursion, domi- 

nant under light smoothing, might lose that 
dominance under heavy smoothing to a few 
weaker but closely positioned, equidirectional 

and hence mutually reinforcing excursions. (This 
effect can be observed in many human activities, 
including scientific evaluation. In a manner of 

speaking, even Np+ and RMS differ in the way 

they see noise as individual and collective phe- 
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n5mena, respectively.) Different groups of noise 
excursions thus appear in time windows of differ- 
ent width; and recognizing particular noise epi- 

sodes -whether original or derivative in na- 
ture- depends on choosing the correct time 
domain. For the present system such an interpre- 
tation implies that 5riginally fast noise is being 
converted into visually slow noise by the filter. 
This conclusion is supported by our earlier-de- 
scribed failure to eliminate what appeared to be 
slow noise fram 2D- and 3D-FPD chromato- 
grams [?]; it will also be supported by later 
simulations resulting in square-root relation- 
ships. 

To be sure, this only means that truly slow 
system noise did not exist to any significant 
extent in the baselines here considered; in many 

other chromatographic and spectroscopic sys- 
tems it may well be present (e.g. as so-called 
“l/f” or “pink” noise [4]). If the latter is the 
case, then the filter may not just convert fast 
noise into seemingly slow noise, but it may also 
rem5ve fast noise from genuinely slow noise. In 
Fig. 6, however, there is little or no evidence of 
that. 

Fig. 6 can be analyzed bq’ mure than vtsultf 
perception. Its raw data are the same as those of 
the earlier Fig. 1 -and combined these two 
figures raise several interesting and, more im- 
portantly, easily answered questions. In Fig. 1, 
the relationship of noise to window width (filter 
time constant) appears linear. Furthermore -al- 
though surprisingly and perhaps spuriously more 
so for ?Ja,, and N,,,, than for RMS- the slope is 
close to one half, suggesting a classical square- 
root dependence based on the randomness of 
noise. If all initial noise were indeed fast and 
normally distributed, would that translate into an 
amplitudina1 square-root reiatictnship of noise 
with the filter’s time constant? Would buth Nail 
and RMS obey it -i.e. would they perhaps 

become parallel and would the ?J,,, iRMS ratio 
therefore become constant? The question is not 
trivial: such parallelism, if it were to occur, 
would provide support +f a theoretical if not of 
a practical nature- for proposing a single rule- 
of-thumb factor that could then be used, general- 
ly and legitimately, to interconvert the two types 

of measurements, For an answer to these ques- 
tions, a purely Gaussian noise file is needed. 

Random noise can be easily simulated. For 
expediency’s sake we take a shortcut here and 
start from a preformed Gaussian distribution of 
noise amplitudes (despite the fact that most if not 
all of the random elements in initial noise are in 
the time domain). What is presumed random and 
dominant in initial noise are, of course, the 
temporat intervals: between photomultiplier tube 
electrons being ejected by photons in the FPD, 
between /3’s being emitted in the ECD, between 
charged particles being formed and collected in 
the FID. Seen through larger filter windows, 
short intervals between these primary events 
appear as positive, long intervals as negative 
amplitudinal excursions. 

Note that, for purpose of noise calculations, 
the initial FID events can be assumed to have 
the same amplitude, i.e. that of a unit charge; 
and the photomultiplier tube electron avalanches 
can be assumed to be of similar strength (at least 
those avalanches set off by photons from the 
FPD flame). In contrast, the ECD’s ion-pair 
yield of ibdividual p-rays varies -in a predict- 
able, inherent manner due to the comcomitant 
loss of neutrinos; in a much less predictable, 
condition-dependent manner due to the particu- 
lars of isotope plating, cell dimensions, foil 
contamination and p backscattering from nearby 
surfaces [34,353. 

For the purpose at hand, Gaussian noise is 
generated either by a commercial program (Sig- 
maplot), or by blindly drawing marked paper 
squares (a tessellated Gaussian) out 5f a weli- 
mixed bowl. (Within the expected variation, the 
resufts are the same. Later and longer simula- 
tions are therefore based on Sigmaplot inputs 
only.) Two types of averaging algorithms are 
used: a stationary boxcar and a non-weighted 
moving window [S---12]. The boxcar mimics the 
action of the gated integrator 171 in the 3D- 
FPD’s fast acquisition circuit (although the 
length of the former is variable while that of the 
latter is fixed at 5 ms). The moving window 
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parallels the action of the AVG filter, The N,,, 
and RMS values can be easily calculated, once 
the compromised start and end pieces (of half 
the boxcar length or window width) are re- 
moved. 

The left side of Fig. 7 shows the visual effects 
of the AVG fiber. (The boxcar traces look 
similar, but are computed only to a boxcar 
“length” ---or “load”- of 64 initial data points.) 
Both types of simulated baseline look very much 
like the real one shown in Fig, 6; except that, 
there, some spikes are present and the window 
can open to only 50 data points. The earlier- 
discussed waxing and waning of particular ex- 
sedimental noise episodes across adjacent win- 
dows of different width can be observed in the 
simulated traces of Fig. 7 as wel1; thus adding 
weight to the adopted interpretation. 

The numerical Nr_r ( = N,,,) and RMS noise 
variation with window width and boxcar length is 
shown in Fig. 8. The points are averages of five 
replicates; from different random inputs, of 
course, and replete with standard-deviation error 

1 

0 2000 4000 5000 8000 0 2000 4000 6DOD 8000 

TIME. data points 

Fig. 7. Traces of AVG-smoothed, single-frequency and multi- 
frequency simulated Gaussian noise (one set out of five 
each}. Left set: single frequency; right set: multiple fre- 
quencies. See text for explanation. 

w 
Lo 
0 
z 

1 
1 10 100 1000 

WINDOW WIDTH or BOXCAR LENGTH. data points 

Fig. 8. Measurements on simulated single-frequency Gaus- 
sian noise, smoothed by boxcar (a) and AVG (0) filters. 
Data points are averages of five independent sets (one AVG 
set is shown on the left side of Fig. 7). 

bars on the least-squares linear regression lines. 
As expected, the two filters behave alike. Also 
as expected: it is the RMS line now that shows 
the square-root slope. The NP+ f RMS ratio de- 
clines, over three orders of time variation, from 
roughly 8 to roughly 5. Compared to the ex- 
perimental Fig. 1, this decline is somewhat less 
steep, 

Far more important in the present context, 
however. is the fact that the “theoretical” NP_rI 
RMS ratio of initially Gaussian noise is iilter- 
width deperzderzt, just as is the exFerime~ta1 
ratio. In other words, in the absence of addition- 
ai information about a particular system, the 
anaIyst can nut correlate its two noise measure- 
ments N,+ and RMS -and, more importantly, 
its corresponding detection limits DLchroIn and 
DLspec- by simply assuming the initial noise to 
be Gaussian. Even if that primary assumption 
were correct, it would not justify the use af a 
constant factor for the interconversion of Nr,_r 
and RMS. Note also that this particular simula- 
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tion assumes initial random noise of only a single 
frequency -there are no noise components of 

other speed present to complicate the picture. 
{The term “frequency” refers here to the im- 
aginary input frequency, i.e. the reciprocal of the 

constant temporal interval between initial data 

points being introduced into the simulation. It 
should be recalled, though, that a random input 

can be considered equivalent to an infinite num- 
ber of sine waves beating at an infinite number 
of frequencies (e.g. [20]).} 

It is, of course, also possible to introduce 
random noise at several different frequencies, 
and then smooth the compounded initial noise. 

(For algorithmic convenience, noise of different 
frequencies is produced here from separate sets 
of random numbers treated by the AVG filter 

and multiplied by the square root of the latter’s 
window width to equalize amplitudes. These 
constituent noise files. and their sum, are thus 

close to being amplitudinally random.) Although 
the results of filtering the summed noise are easy 
to predict, they are still instructive to view. For 

the right-side traces of Fig. 7. five different noise 
sources of different temporal input but equal 
amplitudinal deviation are combined, and the 
result divided by five. The comparison of the left 
and right sides of Fig. 7 shows noisy baselines of 
an obviously different character; although the 
nature of that difference may be hard to put into 

words. 
It is, however. easy to put into numbers: the 

upper part of Fig. 9 shows the N,., and RMS 
curves as derived from five independent repli- 
cates of the entire procedure. The procedure 
simulates -for the left side of the Fig. 9 plot- 

the response of aboriginal multi-frequency noise 
to filters of comparable window width; mimick- 
ing, for instance, the behaviour of a chromato- 

graphic baseline containing random source noise 
with initial frequencies in. say, the lo-0.3-Hz 
range, and being filtered with time constants in 
the 0.1-100-s range. 

The results of filtering initial multi-frequency 
noise can be compared with the results of fil- 
tering initial single-frequency noise (for the lat- 

ter, see Fig. 8). It is obvious why Fig. 9 displays 
a flatter section (very roughly of slope 114 in the 

WINDOW WIDTH, data points 

FREQUENCY (l/window width) 

Fig. 9. Measurements on simulated multi-frequency, equal- 

amplitude noise. smoothed by AVG filter. Upper graph: N,., 

(= N,,,) and RMS; lower graph: conventional “noise power 

spectrum”. Data points are averages of five independent sets 

(one set is shown on the right side of Fig. 7). 

region where noise was introduced, as compared 
to the following, steeper region roughly of slope 
112). The narrow window widths can reduce only 
the faster, not the slower noise components. 
Once the window width exceeds the time con- 
stants (the reciprocals of the introduction fre- 

quencies) of all five initial noise components, the 
curve resumes its familiar square-root slope. 
That, as in Fig. 8, is then merely the wake, i.e. 
the inherent residual, of the initial perturbations. 
Regardless of slope, however, the NP+ /RMS 
ratio keeps decreasing throughout the whole time 
range. This is most important; and in this, single- 
and multi-frequency noise are alike. What this 
finding suggests is that the N,_,IRMS ratio will 
decrease with the extent of filtering regardless of 

noise speed and composition. 
Since the upper graph of Fig. 9 relies on an 
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unconventional choice of axes to suit the purpose 
of this study, we repeat for genera1 interest -but 
refrain from discussing- its RMS result as a 
conventianai “noise power spectrum”’ in the 
lower graph. (A similar graph for Fig. 8 would 
have simply shown the horizontal line considered 
characteristic of “white” noise [4,20,36]). 

So far, the experimental curves used only FPD 
noise. What about FJD and ECD noise? Fig. 10 
shows these, plus a photomultiplier tube dark 
current noise -all as taken from the same, 
conventional electrometer and f&red by the 
same, common FIR filter. (The “unfiltered” 
noise levels are arbitrarily included in Fig. 10 at 
the RC time constant of the electrometer, i.e. at 
0.22 s.) 

Fig. 10 shows sume expected and some un- 
expected features. The Na,,iRMS ratios again 

decrease with the filter time constant as ex- 
pected. Also as expected, differences show up 
between different detectors. What seems unex- 
pected, however, is that afl (least-squares sec- 
ond-order regression) curves are clearly non- 
linear; and that their slopes vary from roughly 
zero to roughly one. Are the FID and the ECD, 
as well as the photomultiplier tube dark current, 
fundamentally different frum the FPD that pro- 
duced the close-to-square-root slope of Fig. l? 

The answer is no -and part af that answer 
can be given by a cogent experiment that uses 
the same FPD flame but samples it by two 
different acquisition systems. Its results are dis- 
played in Fig. Il. The top part of Fig. 11 shows 
the “regular FPD” noise, i-e. noise that came 
through the same electrometer (and the same 
FIR filter) as the three noise records of Fig. 10: 
both figures are hence of the same bent. It does 
indeed make sense that the time constant of the 
electrometer -which is different in nature and 

1 10 

Time Constant (s) 

Fig. 10. Measurements on FIT). ECD and photomultiplier tube (PMT) noise sources. Electrometer (RC time constant 0.22 S) and 

FIR filter. Second-order least-squares regression lines. 
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Fig. 11. Measurements on the same FPD noise source via 

slow and fast acquisition systems. Top: 2D-FPD. otherwise as 

in Fig. 10: bottom: 3D-FPD [71. first-order least-squares 

regression lines. 

larger in value than the time constant of the fast 
3D-FPD acquisition system [7]- should reduce 

the slope to essentially zero: in that region the 
noise is already filtered; and as a consequence 
the expected FIR filter action is largely pre- 
empted. In contrast, the bottom part of Fig. 11 

shows the data for the much faster 3D-FPD 
system. This system is linear. As expected, the 
N,,, /RMS ratio again varies -approximately 

from 10 to 5-- and the (least-squares linear 

regression) RMS line shows a slope very close to 
0.5. 

3.9. General guidelines ? 

The central question of this study, i.e. the 

correlation between peak-to-peak and standard- 
deviation based measurements, can now be ad- 
dressed for the present noise sources and their 

conditions. It is obvious that no single or single- 
series measurement can adequately establish 
such a correlation for general use. Nor can 

theoretical relationships be confidently employed 
as long as the distribution of noise has not been 
experimentally determined. The best that can be 
done under the circumstances is to estimate its 
range of behaviour over as many typical cases 
and conditions as possible. 

This has been done in Fig. 12. Ten early 
experimental series are represented, comprising 

five types of noise sources, three types of filters, 

and three types of noise definitions (the fourth 
one available, grrlt, was excluded: it would have 
made this particular representation less user- 

friendly without adding any significant new in- 
formation). The overall variation of the Nr_l 
RMS ratio covers the range from about 2 to 10 in 

this self-explanatory bar graph. The bars extend 
from the largest to the smallest ratio measured in 
each experimental set; in general, large ratios 

are derived from little-filtered, small ratios from 
much-filtered runs. The left ordinate shows the 
ratio itself; while the right ordinate shows the 

multiplication factor thereby implied for convert- 

ing DLspec at SiRMS = 3 to DLchrom at SIN,_, = 
3 Y. 

Fig. 12 reinforces earlier conclusions: compar- 
ing the peak-to-peak and RMS based measure- 
ments of noise is like comparing apples and 

oranges tumbling out of chromatography’s cor- 
nucopia. There is no simple and clear connection 
between the two, and what there is depends to a 

large extent on conditions. Thus, if the matter is 
deemed important enough to follow through 
-that is if both types of detection limits must be 

reported- it is up to the analyst to meusure both 
under the prevailing laboratory conditions. Obvi- 
ously, however, that process is time-consuming. 
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Fig. 12. Comparison of N,., IRMS and DL,,,,,/DL,,,, ranges for different detector and filter combinations. 2, 4 = Segment 

number in 3D-FPD; (2) = segment number 2, but monitored through stationary wheel via electrometer; t = total of 10 segments 
in 3D-FPD; PMT = dark current of a Hamamatsu R-374 photomultiplier tube. 

Thus there is still some practical value in an 

attempt to narrow conditions and thereby tighten 
correlations, to the point where a however rough 
conversion factor may be made to serve less 

exacting demands. For chromatographic ex- 
pediency (and only for that) we shall therefore 
try to come up with a few. very approximate 

guidelines. 
The difference between the “spikes included” 

N,,, / RMS and the “spikes excluded” IV,,,, / RMS 
values in Fig. 12 is substantial; as expected it is 
mainly due to unsmoothed (really: lightly 
smoothed) noise specimen: their highest values 

are 10 and 6.8, respectively. With heavy smooth- 
ing, the two ratios move closer together (com- 
pare also Table 1). Thus the range of values is 
usually wider in the “spikes included” sets. 
These circumstances would suggest that, for a 
reasonably repeatable correlation of NP_P and 

RMS-based detection limits. the subjective 
“spikes excluded” measurement might prove the 
analyst’s method of choice if true spikes are 
present and the smoothing is but light. If spikes 
are absent and the smoothing is heavy, the 

analyst may prefer the objective “spikes in- 
cluded” treatment. (The earlier mentioned 

statistical exclusion of outliers may ameliorate 
the dilemma this causes for some of the more 

discriminating software designers.) 
On heavily smoothed data sets from the three 

conventional detectors FID, ECD and FPD, the 
N,,,/RMS ratio usually falls between 5 and 6, 
remarkably close to the “N,,_,, = 5 RMS” spectro- 
scopic rule-of-thumb (e.g. [3,4]). That implies a 
range of 3.3 to 4 for the DL,,,,,/DL,,,, ratio. 
The N,,,, /RMS ratios are smaller, but not by 
much. (These numbers depend, of course, on the 
permissible extent of smoothing, that is to say on 
the width of the analyte peak. As will be shown 

later, the longest time constants used for Fig. 12 
would have not just smoothed but smothered a 
really fast chromatogram.) 

3. ICI. Filters and signal/noise ratios: a practical 
example 

The general “guidelines” suggested above for 
estimating noise, noise ratios and detection-limit 



X.-Y. Sun et al. / J. C’hromatogr. A 687 (1994) 259-281 277 

conversion factors do go at least as far as the 
data of Fig. 12 allow. Therefore, and for the 
purpose of illustration, we would like to examine 
the real-life example of a “detection-limit” file. 

(This is one of the easily characterized, manipu- 
lated, and displayed “noise-cum-analyte” files 
from our 3D-FPD repository. However, similar 
files from the 2D-FPD, the ECD and the FPD 
would, mutatis mutandis, have produced similar 
results.) The Same data file is treated here with 
three different filters, to the extent reasonable or 
possible. A small part (5 min out of 12) of the 
original data file is displayed on the left side of 
Fig. 13. It calls to mind Ambrose Bierce’s 
definition of noise as “the chief product and 

w 

Fig. 13. Five minutes of 3D-FPD noise, with solvent and 

analyte peak, as smoothed bv FIR. AVG and RC filters. 

Left: raw data file: laser print&; with added arrow marking 

the analyte peak. Mlddle: file smoothed to the SIN,,,,., level 

by FIR and AVG filter (laser printer) and RC filter (recor- 

der); RC chromatogram adjusted for equal retention. Right: 

same as middle, but file smoothed to the S/NmaX level by 

FIR, and to the strongest setting available by AVG and RC 

filters. See text for further explanations. 

authenticating sign of civilization” (Ref. [37]; 
substitute “chromatography” for “civilization”). 

As the noise of the original Fig. 13 data file is 
being suppressed by the filters, and the analyte 

peak slowly emerges, the question arises to what 
level the process can or should be taken. At first 
thought, this level might be the maximum signal/ 

noise ratio (SIN,,.,,,), at least for straightforward 
qualitative detection. If, however, the filtered 

data file is also to be used for quantitation, the 

argument could be made that the peak height 
should not be unduly truncated by the smoothing 
process. Therefore we add a detection-limit 

assessment at the particular level of filtering that 
reduces the peak height by an -arbitrary but 
still generally tolerable- 10% (SIN,,,). As it 

turns out, all three filters are capable of reaching 
that level. Corresponding parts of the SIN,,, 
and SIN,,,,, chromatograms are displayed in the 
middle and on the right side of Fig. 13, respec- 
tively. Fig. 14 translates these to numbers and 
plots them in a format conducive to putting forth 

some simple arguments. 
In order to emphasize the controlling role of 

the analyte peak -whose width defines the 

extent of smoothing possible or permissible (e.g. 
[29])- the curves of Fig. 14 are normalized such 

that the 10% peak-height reduction appears at 
the same position; and that the three lines are 
superimposed on one another. This necessitates 
the use of three formally different abscissae. 
There is, however, no real contradiction between 
these three different scales. Time constants of 
different types of filters cannot be directly com- 
pared. Filter action depends on the nature as 
well as on the sophistication of the particular 
filter mechanism or algorithm; and the transfer 
functions of the three filters, operating here on 
not-quite-Gaussian noise, can at best be roughly 

estimated. The most glaring difference, i.e. the 
approximate factor of 1.7 between the time 
constants of the low-pass RC filter on one hand, 

and the AVG moving window on the other, is 
indeed expected 14,201. 

All three curves in the top graph -a 
semilogarithmic plot of peak height reduction vs. 

filter time constant- appear to be linear. When 
the top graph is compared with the bottom 
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Fig. 14. Corresponding plots of reduction in peak height and 

SIN vs. nominal time constants of FIR (0). AVG (8) and 

RC (V) filters. 

graph, it turns out that the SIN increases until 
the peak height has been reduced by roughly one 
half! To filter that far may or may not endanger 
accuracy: how far the process can be driven 
obviously depends on the particular objectives of 

analysis and analyst (cf. [29]). 
As expected, the fast but unweighted AVG 

filter performs less well than the slow but weight- 

ed FIR filter (running on its maximum of 128 
taps). In terms of practical use, however, the 
difference is decidedly minor. The AVG and RC 

filters do not overtly reach the SIN,,, level, but 
must be close to doing so. The three-pole RC 
filter is a very simple representative of its kind. 

Considerably sharper roll-offs can be achieved 
with units of higher order. say five- or six-pole 
filters. Again, however, the main advantage of 

the higher-order filters may only be that they can 
work a bit closer to the analyte peak without 
seriously cropping it -a small and usually negli- 

gible advantage if no initial noise components 
are present in that frequency region. 

The reader may indeed be surprised at how 
little the three disparate filters differ in chro- 
matographic performance. Filters, particularly 
complex and expensive ones, are designed to cut 

on and/or cut off within the smallest time-con- 
stant increment, i.e. they are expected to offer 
the sharpest roll-offs. Thus they are often judged 
by how well they can suppress sine waves of one 
frequency versus another [36]. Yet most of the 
slow noise seen in this paper appears to be just 

the square-root carry-over (transform) of fast 
noise: it represents an unavoidable, minimum 
contribution. Truly fast and random noise, in the 
Gestalt of a slow-moving transform, just can not 
be circumvented, subtracted or, for that matter, 
further suppressed by any algorithm. (In con- 

trast, if the initial noise were to contain addition- 
al, sizeable amounts of truly slow components 
-components close but not equal to the chro- 

matographic dispersion of the analyte peak- 
then the higher-order filters should, on a relative 
basis, provide larger improvements in the detec- 

tion limit.) 
It may be asked what typical improvement in 

noise -hence in detection limits- the chro- 

matographer could expect from filtering a par- 
ticular chromatogram; given that most of the 
initial noise was fast and random and that the 

filter did not unduly diminish the analyte peak. 
The fairly obvious answer is that the noise 

should be reduced by a factor of approximately 
(t&y, where t, and tA are the (effective, 
comparable) time constants of filter and am- 
plifier. As a typical order-of-magnitude example, 

the chromatographically permissible time con- 
stant of an RC filter may be 1 s, and the RC 

constant of the electrometer circuit that feeds it 
0.1 s. The approximate decrease in noise the 
analyst can then expect from the filter is 101’2, 
i.e. about threefold -and the approximate in- 

crease in SIN should be the same (provided the 
peak height has not been significantly compro- 
mised). This does, indeed, agree with our practi- 
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cal experience, in which we find that filters 
improve detection limits for conventional detec- 
tor channels by factors of, typically, three to 
four. 

On the other hand. fast acquisition systems, 
like that of the 3D-FPD, allow more noise to be 
transferred. Hence they will also allow more 

noise to be removed over the now wider fre- 
quency range of the smoothing process: such 
systems will appear to offer larger improvement 

factors. For instance, the maximum SIN im- 
provement shown in Fig. 14 is close to sixfold. It 
is similarly obvious that excessively spiky 

baselines lead to apparently larger improvement 
factors (for the same time-constant ratio of 
filtered to unfiltered data), particularly if noise is 

measured as N,,,. 
The data of Fig. 14 do portray the situation 

correctly; however, they do not convey the full 

perceptional impact that the analyst may require 
for optimal pattern recognition and chromato- 
graphic diagnosis, or that the reader may desire 

for an appreciation of how far the smoothing 
process can actually be driven. This is one reason 
why we prefer to report our laboratory’s (and 

assess other laboratories’) detection limits in 
original graphic form, i.e. in the form of analyte 

peaks surrounded by noise, displayed above the 

chromatographic time scale (and perhaps sup- 
plemented in the caption by the effective filter 
constant) -rather than in the form of single and 

possibly equivocal numbers. Also, seeing is 
believing: the reader may have wondered 
whether it is really possible to derive relatively 

clean data -as those of Fig. 14-- from a 
chromatogram as shown on the left side of Fig. 
13; and whether the action of the three disparate 

filters is really that alike. 
Accordingly, the results of the three filtering 

processes are presented first for SIN,,,,,, in the 

middle, then for SIN,,, (FIR) or the highest 
available filter setting (AVG and RC) on the 
right side of Fig. 13. FIR- and AVG-smoothed 
traces are reproduced on the laser printer. while 

the RC-smoothed trace is, of necessity, recorded 
on a chart and then amplified on a copier to 

obtain the same retention time scale for chro- 
matographic line-up. (While that procedure does 

not change S/N, both peaks and noise appear a 
bit larger in comparison.) 

To our eyes at least, noise at SIN,,,, still 
appears faster than, hence qualitatively different 

from, the analyte peak. At SIN,,,, this differ- 
ence has essentially vanished: noise could now 

be perceived as a sequence of smaller peaks 
(particularly if this were a temperature-pro- 

grammed run). In other words, the analyte peaks 
are distinguished by both size and width from the 

former type of noise, by size only from the latter 

type of noise. Obviously, two perceptional di- 

mensions provide more acute discrimination 
-hence bestow higher confidence- than just 
one. It is for this reason that, despite the lower 

S/N, our group actually prefers to use filter 
settings close to those of SIN,,,; even if merely 
qualitative evaluation is at stake. We realize, 

however, that such choice depends not only on 
the analytical objective, but also on the chro- 

matographic experience and perceptional acuity 
of the individual analyst. 

3. Il. Adding perspective (some of it in 
revision) 

To add the obvious: The experiments above 
-for sake of a clearer, preciser look at the 
subject- have evaluated the S/N of a single data 
file. Other data files will display the same rela- 
tive behavior, though not the same absolute 
number. When a single-data-file S/N is changed 
into a conventional detection limit, the precision 
implied by, e.g., Fig. 14 may prove delusive. The 
detection limit must still remain a ane-significant- 
digit number; and that it does can be ascertained 

by comparing different data files or different 
experimental series. While interesting in their 

own right, the differences between three types of 
filters, or between SIN,,,,, and SIN,,,,,, or be- 

tween N,,, and IV,,,, are -when measured from 
one data file- generally smaller than the corre- 

sponding differences between two data files 
treated by the Same filter and evaluated accord- 

ing to the same definition. 
In this context, we believe that a protocol for 

measuring detection limits would be helpful. Yet, 
we would also consider it presumptuous for us to 
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suggest one: this not only because we feel less 
qualified than others to do so, but also because a 

prematurely suggested protocol might hinder 
rather than help the advent of eventual consen- 
sus. Accordingly, we will be content to pose a 
few simple questions (sometimes parenthetically 
accompanied by our own biases) to make a few 
(im?)pertinent points. 

Given its much better precision, is the analyst 
to choose and use but a single data file for 
determining the detection limit? Or should the 

analyst go for the best. or the worst, or the 
average (with or without standard deviation?) of 
multiple data files? (We are accustomed to using 

a “typical” one -whatever “typical” may mean 
in this context.) Furthermore, is the detector at 
its best, typical or worst performance during the 

measurement? And is the choice of test sub- 
stances and chromatographic settings designed 
for general use, for a particular analysis, or for 

obtaining the lowest possible value of the detec- 
tion limit? (We usually attempt to follow litera- 
ture precedents -unless our own choice of 
standards and circumstances should yield better 
results.) It is these choices that often cause the 
largest discrepancies among reported DL values. 

It has been claimed, for instance, that commer- 
cial FIDs -most of which are of similar sensitivi- 
ty- differ by an order of magnitude in their 
advertised detection limits. 

Note that this does not deny noise analysis its 
proper place in the determination of detection 
limits -it just cautions that noise characteristics 
may be overwhelmed by extraneous circum- 
stances of greater variance. Note also that we are 
concerned here only with detector noise -while 

the consideration of real-life samples must obvi- 
ously involve not just detection but the whole 

analytical procedure including sampling. But that 
is, of course, another and far more complex 
problem. 

However flawed, detection limits will continue 
to remain indispensable tools of the analytical 
trade. Nevertheless, chromatographers contem- 

plating the use of a published method or the 
purchase of an advertised detector may well 
prefer to investigate -before they invest- a 
claimed “detection limit” with the help of their 

own standards and in accord with their own 

definitions. 
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